home *** CD-ROM | disk | FTP | other *** search
/ NeXT Education Software Sampler 1992 Fall / NeXT Education Software Sampler 1992 Fall.iso / Mathematics / Notebooks / CSOMinesCalculus / Chapter3 / ws7.tex < prev    next >
LaTeX Document  |  1992-07-15  |  7.1 KB

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: LaTeX Document (document/latex).

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
1% dexvert Corel 10 Texture (image/corel10Texture) ext Unsupported
1% dexvert Croteam texture file (image/croteamTextureFile) ext Unsupported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX document text default
99% file LaTeX document, ASCII text, with very long lines (997) default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% siegfried fmt/281 LaTeX (Subdocument) default
100% detectItEasy Format: plain text[LF] default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 64 6f 63 75 6d 65 6e | 74 73 74 79 6c 65 5b 66 |\documen|tstyle[f|
|00000010| 6c 65 71 6e 2c 65 70 73 | 66 2c 63 61 6c 63 5d 7b |leqn,eps|f,calc]{|
|00000020| 61 72 74 69 63 6c 65 7d | 0a 5c 6d 61 72 6b 72 69 |article}|.\markri|
|00000030| 67 68 74 7b 43 68 61 70 | 74 65 72 20 33 3a 20 57 |ght{Chap|ter 3: W|
|00000040| 6f 72 6b 73 68 65 65 74 | 20 37 7d 0a 5c 62 65 67 |orksheet| 7}.\beg|
|00000050| 69 6e 7b 64 6f 63 75 6d | 65 6e 74 7d 0a 0a 5c 42 |in{docum|ent}..\B|
|00000060| 66 7b 5c 53 74 61 72 20 | 5c 53 74 61 72 5c 20 43 |f{\Star |\Star\ C|
|00000070| 68 61 70 74 65 72 20 33 | 3a 20 57 6f 72 6b 73 68 |hapter 3|: Worksh|
|00000080| 65 65 74 20 37 20 20 5c | 68 66 69 6c 6c 20 4a 61 |eet 7 \|hfill Ja|
|00000090| 63 6b 20 4b 2e 20 43 6f | 68 65 6e 20 5c 68 66 69 |ck K. Co|hen \hfi|
|000000a0| 6c 6c 20 43 6f 6c 6f 72 | 61 64 6f 20 53 63 68 6f |ll Color|ado Scho|
|000000b0| 6f 6c 20 6f 66 20 4d 69 | 6e 65 73 7d 0a 0a 5c 76 |ol of Mi|nes}..\v|
|000000c0| 73 70 61 63 65 7b 31 2e | 35 65 78 7d 0a 5c 43 62 |space{1.|5ex}.\Cb|
|000000d0| 7b 4d 61 78 69 6d 75 6d | 2d 4d 69 6e 69 6d 75 6d |{Maximum|-Minimum|
|000000e0| 20 50 72 6f 62 6c 65 6d | 73 2c 20 44 69 6d 65 6e | Problem|s, Dimen|
|000000f0| 73 69 6f 6e 61 6c 20 61 | 6e 64 20 50 6c 61 75 73 |sional a|nd Plaus|
|00000100| 69 62 69 6c 69 74 79 20 | 43 68 65 63 6b 73 7d 0a |ibility |Checks}.|
|00000110| 5c 76 73 70 61 63 65 7b | 31 2e 35 65 78 7d 0a 0a |\vspace{|1.5ex}..|
|00000120| 5c 6e 6f 69 6e 64 65 6e | 74 20 5c 42 66 7b 53 75 |\noinden|t \Bf{Su|
|00000130| 67 67 65 73 74 65 64 20 | 50 72 6f 62 6c 65 6d 73 |ggested |Problems|
|00000140| 7d 0a 53 65 63 74 69 6f | 6e 20 33 2e 36 3a 20 50 |}.Sectio|n 3.6: P|
|00000150| 6f 6e 64 65 72 20 74 68 | 65 20 60 60 35 20 73 74 |onder th|e ``5 st|
|00000160| 65 70 27 27 20 70 72 6f | 63 65 64 75 72 65 20 66 |ep'' pro|cedure f|
|00000170| 6f 72 20 73 6f 6c 76 69 | 6e 67 20 70 72 6f 62 6c |or solvi|ng probl|
|00000180| 65 6d 73 20 67 69 76 65 | 6e 20 6f 6e 20 70 61 67 |ems give|n on pag|
|00000190| 65 20 31 31 33 2e 20 20 | 41 6c 73 6f 20 72 65 61 |e 113. |Also rea|
|000001a0| 64 20 63 61 72 65 66 75 | 6c 6c 79 20 74 68 65 20 |d carefu|lly the |
|000001b0| 64 69 73 63 75 73 73 69 | 6f 6e 73 20 6f 6e 20 70 |discussi|ons on p|
|000001c0| 61 67 65 20 31 31 39 20 | 6f 6e 20 63 68 65 63 6b |age 119 |on check|
|000001d0| 69 6e 67 20 72 65 73 75 | 6c 74 73 20 62 79 20 70 |ing resu|lts by p|
|000001e0| 6c 61 75 73 69 62 69 6c | 69 74 79 20 61 6e 64 20 |lausibil|ity and |
|000001f0| 64 69 6d 65 6e 73 69 6f | 6e 61 6c 20 63 68 65 63 |dimensio|nal chec|
|00000200| 6b 73 2e 20 20 4c 6f 6f | 6b 20 61 74 20 74 68 65 |ks. Loo|k at the|
|00000210| 20 45 78 61 6d 70 6c 65 | 73 20 5c 45 6d 7b 63 61 | Example|s \Em{ca|
|00000220| 72 65 66 75 6c 6c 79 7d | 2c 20 65 73 70 65 63 69 |refully}|, especi|
|00000230| 61 6c 6c 79 20 45 78 61 | 6d 70 6c 65 20 36 2e 20 |ally Exa|mple 6. |
|00000240| 20 4d 61 6b 65 20 73 75 | 72 65 20 79 6f 75 20 75 | Make su|re you u|
|00000250| 6e 64 65 72 73 74 61 6e | 64 20 74 68 65 20 62 61 |nderstan|d the ba|
|00000260| 73 69 63 73 20 62 79 20 | 64 6f 69 6e 67 20 73 6f |sics by |doing so|
|00000270| 6d 65 20 60 60 77 61 72 | 6d 2d 75 70 27 27 20 70 |me ``war|m-up'' p|
|00000280| 72 6f 62 6c 65 6d 73 2c | 20 73 61 79 20 31 2c 20 |roblems,| say 1, |
|00000290| 33 2c 20 35 2e 20 20 41 | 66 74 65 72 20 64 6f 69 |3, 5. A|fter doi|
|000002a0| 6e 67 20 74 68 65 20 70 | 72 6f 62 6c 65 6d 73 20 |ng the p|roblems |
|000002b0| 67 69 76 65 6e 20 62 65 | 6c 6f 77 2c 20 6f 74 68 |given be|low, oth|
|000002c0| 65 72 20 69 6e 74 65 72 | 65 73 74 69 6e 67 20 6f |er inter|esting o|
|000002d0| 6e 65 73 20 61 72 65 20 | 32 37 2c 20 33 31 2c 20 |nes are |27, 31, |
|000002e0| 33 33 2c 20 33 35 2c 20 | 34 31 2c 20 34 35 2c 20 |33, 35, |41, 45, |
|000002f0| 35 31 2e 20 20 49 6e 20 | 61 6c 6c 20 63 61 73 65 |51. In |all case|
|00000300| 73 2c 20 6d 61 6b 65 20 | 61 6e 20 65 66 66 6f 72 |s, make |an effor|
|00000310| 74 20 74 6f 20 75 73 65 | 20 6c 65 74 74 65 72 73 |t to use| letters|
|00000320| 20 69 6e 73 74 65 61 64 | 20 6f 66 20 73 70 65 63 | instead| of spec|
|00000330| 69 66 69 63 20 6e 75 6d | 62 65 72 73 2e 20 20 4e |ific num|bers. N|
|00000340| 6f 74 65 3a 20 70 72 6f | 62 6c 65 6d 20 34 38 20 |ote: pro|blem 48 |
|00000350| 69 73 20 6f 66 20 73 63 | 69 65 6e 74 69 66 69 63 |is of sc|ientific|
|00000360| 20 69 6e 74 65 72 65 73 | 74 20 61 6e 64 20 77 69 | interes|t and wi|
|00000370| 6c 6c 20 70 72 6f 62 61 | 62 6c 79 20 62 65 20 63 |ll proba|bly be c|
|00000380| 6f 76 65 72 65 64 20 69 | 6e 20 63 6c 61 73 73 2e |overed i|n class.|
|00000390| 0a 0a 5c 76 73 70 61 63 | 65 7b 31 2e 35 65 78 7d |..\vspac|e{1.5ex}|
|000003a0| 0a 0a 5c 6e 6f 69 6e 64 | 65 6e 74 20 5c 42 66 7b |..\noind|ent \Bf{|
|000003b0| 45 78 61 6d 70 6c 65 7d | 0a 28 33 2e 36 2e 32 29 |Example}|.(3.6.2)|
|000003c0| 20 46 69 6e 64 20 74 68 | 65 20 6d 61 78 69 6d 75 | Find th|e maximu|
|000003d0| 6d 20 70 6f 73 73 69 62 | 6c 65 20 61 72 65 61 20 |m possib|le area |
|000003e0| 6f 66 20 61 20 72 65 63 | 74 61 6e 67 6c 65 20 6f |of a rec|tangle o|
|000003f0| 66 20 70 65 72 69 6d 65 | 74 65 72 20 32 30 30 20 |f perime|ter 200 |
|00000400| 66 74 2e 0a 5c 76 73 70 | 61 63 65 7b 30 2e 37 35 |ft..\vsp|ace{0.75|
|00000410| 65 78 7d 0a 0a 5c 6e 6f | 69 6e 64 65 6e 74 20 4c |ex}..\no|indent L|
|00000420| 65 74 27 73 20 75 73 65 | 20 74 68 69 73 20 65 61 |et's use| this ea|
|00000430| 73 79 20 70 72 6f 62 6c | 65 6d 20 74 6f 20 69 6c |sy probl|em to il|
|00000440| 6c 75 73 74 72 61 74 65 | 20 75 73 69 6e 67 20 74 |lustrate| using t|
|00000450| 68 65 20 35 2d 73 74 65 | 70 20 70 72 6f 63 65 73 |he 5-ste|p proces|
|00000460| 73 20 61 6e 64 20 63 68 | 65 63 6b 73 2e 20 20 46 |s and ch|ecks. F|
|00000470| 69 72 73 74 20 6f 66 66 | 2c 20 74 6f 20 65 6e 61 |irst off|, to ena|
|00000480| 62 6c 65 20 67 65 74 74 | 69 6e 67 20 61 20 6d 6f |ble gett|ing a mo|
|00000490| 72 65 20 67 65 6e 65 72 | 61 6c 20 72 65 73 75 6c |re gener|al resul|
|000004a0| 74 20 77 65 20 72 65 70 | 6c 61 63 65 20 74 68 65 |t we rep|lace the|
|000004b0| 20 73 70 65 63 69 66 69 | 63 20 6e 75 6d 62 65 72 | specifi|c number|
|000004c0| 20 32 30 30 20 62 79 20 | 24 50 24 2c 20 74 68 65 | 200 by |$P$, the|
|000004d0| 20 70 65 72 69 6d 65 74 | 65 72 2e 0a 5c 62 65 67 | perimet|er..\beg|
|000004e0| 69 6e 7b 64 65 73 63 72 | 69 70 74 69 6f 6e 7d 0a |in{descr|iption}.|
|000004f0| 5c 69 74 65 6d 5b 46 69 | 6e 64 20 71 75 61 6e 74 |\item[Fi|nd quant|
|00000500| 69 74 79 20 74 6f 20 62 | 65 20 6d 61 78 69 6d 69 |ity to b|e maximi|
|00000510| 7a 65 64 20 6f 72 20 6d | 69 6e 69 6d 69 7a 65 64 |zed or m|inimized|
|00000520| 5d 20 20 54 68 65 79 20 | 74 65 6c 6c 20 75 73 20 |] They |tell us |
|00000530| 72 69 67 68 74 20 6f 66 | 66 3a 20 5c 45 6d 7b 6d |right of|f: \Em{m|
|00000540| 61 78 69 6d 69 7a 65 7d | 20 74 68 65 20 7b 61 72 |aximize}| the {ar|
|00000550| 65 61 7d 20 28 77 6f 75 | 6c 64 20 69 74 20 6d 61 |ea} (wou|ld it ma|
|00000560| 6b 65 20 73 65 6e 73 65 | 20 74 6f 20 5c 45 6d 7b |ke sense| to \Em{|
|00000570| 6d 69 6e 69 6d 69 7a 65 | 7d 20 74 68 65 20 61 72 |minimize|} the ar|
|00000580| 65 61 3f 29 2e 20 20 41 | 73 20 70 61 72 74 20 6f |ea?). A|s part o|
|00000590| 66 20 74 68 69 73 20 73 | 74 65 70 2c 20 77 65 20 |f this s|tep, we |
|000005a0| 73 68 6f 75 6c 64 20 61 | 6c 73 6f 20 75 73 75 61 |should a|lso usua|
|000005b0| 6c 6c 79 20 6d 61 6b 65 | 20 61 20 73 6b 65 74 63 |lly make| a sketc|
|000005c0| 68 20 61 6e 64 20 64 65 | 66 69 6e 65 20 61 6e 79 |h and de|fine any|
|000005d0| 20 76 61 72 69 61 62 6c | 65 73 20 6e 65 65 64 65 | variabl|es neede|
|000005e0| 64 3a 0a 09 5c 62 65 67 | 69 6e 7b 66 69 67 75 72 |d:..\beg|in{figur|
|000005f0| 65 7d 5b 68 74 62 5d 0a | 09 5c 65 70 73 66 79 73 |e}[htb].|.\epsfys|
|00000600| 69 7a 65 20 38 30 70 74 | 0a 09 5c 63 65 6e 74 65 |ize 80pt|..\cente|
|00000610| 72 6c 69 6e 65 7b 5c 65 | 70 73 66 66 69 6c 65 7b |rline{\e|psffile{|
|00000620| 77 73 37 65 78 2e 65 70 | 73 7d 7d 0a 09 5c 63 61 |ws7ex.ep|s}}..\ca|
|00000630| 70 74 69 6f 6e 7b 53 6b | 65 74 63 68 20 66 6f 72 |ption{Sk|etch for|
|00000640| 20 45 78 61 6d 70 6c 65 | 7d 20 0a 09 5c 65 6e 64 | Example|} ..\end|
|00000650| 7b 66 69 67 75 72 65 7d | 0a 4c 65 74 20 24 78 24 |{figure}|.Let $x$|
|00000660| 20 62 65 20 74 68 65 20 | 77 69 64 74 68 20 61 6e | be the |width an|
|00000670| 64 20 24 79 24 20 74 68 | 65 20 6c 65 6e 67 74 68 |d $y$ th|e length|
|00000680| 20 61 73 20 73 68 6f 77 | 6e 20 69 6e 20 46 69 67 | as show|n in Fig|
|00000690| 75 72 65 20 31 2e 0a 5c | 69 74 65 6d 5b 45 78 70 |ure 1..\|item[Exp|
|000006a0| 72 65 73 73 20 74 68 65 | 20 64 65 70 65 6e 64 65 |ress the| depende|
|000006b0| 6e 74 20 76 61 72 69 61 | 62 6c 65 20 61 73 20 61 |nt varia|ble as a|
|000006c0| 20 66 75 6e 63 74 69 6f | 6e 20 6f 66 20 74 68 65 | functio|n of the|
|000006d0| 20 69 6e 64 65 70 65 6e | 64 65 6e 74 20 76 61 72 | indepen|dent var|
|000006e0| 69 61 62 6c 65 5d 20 20 | 46 72 6f 6d 20 74 68 65 |iable] |From the|
|000006f0| 20 66 69 67 75 72 65 2c | 20 24 41 20 3d 20 78 20 | figure,| $A = x |
|00000700| 79 24 2e 20 20 57 65 20 | 6e 65 65 64 20 61 6e 20 |y$. We |need an |
|00000710| 61 75 78 69 6c 69 61 72 | 79 20 65 71 75 61 74 69 |auxiliar|y equati|
|00000720| 6f 6e 20 74 6f 20 65 6c | 69 6d 69 6e 61 74 65 20 |on to el|iminate |
|00000730| 6f 6e 65 20 6f 66 20 24 | 78 24 20 61 6e 64 20 24 |one of $|x$ and $|
|00000740| 79 24 2e 20 20 48 65 72 | 65 2c 20 77 65 20 75 73 |y$. Her|e, we us|
|00000750| 65 20 74 68 61 74 20 74 | 68 65 20 70 65 72 69 6d |e that t|he perim|
|00000760| 65 74 65 72 20 69 73 20 | 66 69 78 65 64 2c 20 24 |eter is |fixed, $|
|00000770| 50 20 3d 20 32 78 20 2b | 20 32 79 24 2c 20 61 6e |P = 2x +| 2y$, an|
|00000780| 64 20 73 6f 6c 76 65 20 | 66 6f 72 20 24 79 20 3d |d solve |for $y =|
|00000790| 20 50 2f 32 20 2d 20 78 | 24 20 74 6f 20 67 65 74 | P/2 - x|$ to get|
|000007a0| 20 24 41 20 3d 20 78 28 | 50 2f 32 20 2d 20 78 29 | $A = x(|P/2 - x)|
|000007b0| 24 2e 20 20 50 68 79 73 | 69 63 61 6c 20 61 72 65 |$. Phys|ical are|
|000007c0| 61 20 6d 75 73 74 20 62 | 65 20 70 6f 73 69 74 69 |a must b|e positi|
|000007d0| 76 65 2c 20 73 6f 20 74 | 68 69 73 20 6c 61 73 74 |ve, so t|his last|
|000007e0| 20 65 78 70 72 65 73 73 | 69 6f 6e 20 66 6f 72 20 | express|ion for |
|000007f0| 24 41 24 20 73 68 6f 77 | 73 20 74 68 61 74 20 77 |$A$ show|s that w|
|00000800| 65 20 63 61 6e 20 63 6f | 6e 66 69 6e 65 20 63 6f |e can co|nfine co|
|00000810| 6e 73 69 64 65 72 61 74 | 69 6f 6e 20 6f 66 20 24 |nsiderat|ion of $|
|00000820| 78 24 2d 76 61 6c 75 65 | 73 20 74 6f 20 24 28 30 |x$-value|s to $(0|
|00000830| 2c 20 50 2f 32 29 24 2c | 20 74 68 61 74 20 69 73 |, P/2)$,| that is|
|00000840| 20 24 30 20 3c 20 78 20 | 3c 20 50 2f 32 20 3d 20 | $0 < x |< P/2 = |
|00000850| 31 30 30 24 2e 20 20 20 | 54 68 65 20 65 6e 64 70 |100$. |The endp|
|00000860| 6f 69 6e 74 73 20 24 78 | 20 3d 20 30 2c 20 78 20 |oints $x| = 0, x |
|00000870| 3d 20 50 2f 32 24 20 67 | 69 76 65 20 7a 65 72 6f |= P/2$ g|ive zero|
|00000880| 20 61 72 65 61 2c 20 77 | 68 69 63 68 20 69 73 6e | area, w|hich isn|
|00000890| 27 74 20 70 68 79 73 69 | 63 61 6c 2c 20 62 75 74 |'t physi|cal, but|
|000008a0| 20 64 6f 65 73 20 6e 6f | 20 68 61 72 6d 20 74 6f | does no| harm to|
|000008b0| 20 69 6e 63 6c 75 64 65 | 20 74 68 65 73 65 20 70 | include| these p|
|000008c0| 6f 69 6e 74 73 20 20 73 | 69 6e 63 65 20 77 65 20 |oints s|ince we |
|000008d0| 6b 6e 6f 77 20 74 68 61 | 74 20 30 20 69 73 20 6e |know tha|t 0 is n|
|000008e0| 6f 74 20 74 68 65 20 6d | 61 78 69 6d 75 6d 20 76 |ot the m|aximum v|
|000008f0| 61 6c 75 65 20 77 65 20 | 73 65 65 6b 2e 20 20 54 |alue we |seek. T|
|00000900| 68 65 20 62 65 6e 65 66 | 69 74 20 6f 66 20 69 6e |he benef|it of in|
|00000910| 63 6c 75 64 69 6e 67 20 | 74 68 65 20 65 6e 64 70 |cluding |the endp|
|00000920| 6f 69 6e 74 73 20 69 6e | 20 74 68 65 20 64 6f 6d |oints in| the dom|
|00000930| 61 69 6e 20 69 73 20 74 | 68 61 74 20 77 65 20 63 |ain is t|hat we c|
|00000940| 61 6e 20 61 70 70 6c 79 | 20 74 68 65 20 43 6c 6f |an apply| the Clo|
|00000950| 73 65 64 20 49 6e 74 65 | 72 76 61 6c 20 45 78 74 |sed Inte|rval Ext|
|00000960| 72 65 6d 75 6d 20 74 68 | 65 6f 72 79 3a 20 20 74 |remum th|eory: t|
|00000970| 68 65 20 6d 61 78 69 6d | 75 6d 20 77 69 6c 6c 20 |he maxim|um will |
|00000980| 6f 63 63 75 72 20 65 69 | 74 68 65 72 20 61 74 20 |occur ei|ther at |
|00000990| 74 68 65 20 65 6e 64 70 | 6f 69 6e 74 73 20 28 6e |the endp|oints (n|
|000009a0| 6f 74 20 69 6e 20 74 68 | 69 73 20 63 61 73 65 20 |ot in th|is case |
|000009b0| 74 68 6f 75 67 68 21 29 | 20 6f 72 20 61 74 20 70 |though!)| or at p|
|000009c0| 6c 61 63 65 73 20 77 68 | 65 72 65 20 24 41 28 78 |laces wh|ere $A(x|
|000009d0| 29 24 20 69 73 20 6e 6f | 74 20 64 69 66 66 65 72 |)$ is no|t differ|
|000009e0| 65 6e 74 69 61 62 6c 65 | 20 28 69 6e 20 74 68 69 |entiable| (in thi|
|000009f0| 73 20 63 61 73 65 20 74 | 68 65 72 65 20 61 72 65 |s case t|here are|
|00000a00| 20 6e 6f 20 73 75 63 68 | 20 70 6f 69 6e 74 73 2d | no such| points-|
|00000a10| 2d 2d 24 41 24 20 69 73 | 20 61 20 70 6f 6c 79 6e |--$A$ is| a polyn|
|00000a20| 6f 6d 69 61 6c 2c 20 73 | 6f 20 64 69 66 66 65 72 |omial, s|o differ|
|00000a30| 65 6e 74 69 61 62 6c 65 | 20 65 76 65 72 79 77 68 |entiable| everywh|
|00000a40| 65 72 65 29 20 6f 72 20 | 61 74 20 70 6c 61 63 65 |ere) or |at place|
|00000a50| 73 20 77 68 65 72 65 20 | 74 68 65 20 64 65 72 69 |s where |the deri|
|00000a60| 76 61 74 69 76 65 20 24 | 41 27 24 20 76 61 6e 69 |vative $|A'$ vani|
|00000a70| 73 68 65 73 20 28 79 65 | 73 21 29 2e 0a 5c 69 74 |shes (ye|s!)..\it|
|00000a80| 65 6d 5b 41 70 70 6c 79 | 20 63 61 6c 63 75 6c 75 |em[Apply| calculu|
|00000a90| 73 20 74 6f 20 66 69 6e | 64 20 74 68 65 20 63 72 |s to fin|d the cr|
|00000aa0| 69 74 69 63 61 6c 20 70 | 6f 69 6e 74 73 5d 20 20 |itical p|oints] |
|00000ab0| 24 41 27 20 3d 20 30 24 | 20 67 69 76 65 73 20 24 |$A' = 0$| gives $|
|00000ac0| 78 20 3d 20 50 2f 34 24 | 2e 20 20 53 69 6e 63 65 |x = P/4$|. Since|
|00000ad0| 2c 20 61 73 20 61 6c 72 | 65 61 64 79 20 64 69 73 |, as alr|eady dis|
|00000ae0| 63 75 73 73 65 64 2c 20 | 24 41 24 20 69 73 20 64 |cussed, |$A$ is d|
|00000af0| 69 66 66 65 72 65 6e 74 | 69 61 62 6c 65 20 61 74 |ifferent|iable at|
|00000b00| 20 61 6c 6c 20 70 6f 69 | 6e 74 73 2c 20 74 68 69 | all poi|nts, thi|
|00000b10| 73 20 69 73 20 74 68 65 | 20 5c 45 6d 7b 6f 6e 6c |s is the| \Em{onl|
|00000b20| 79 7d 20 63 72 69 74 69 | 63 61 6c 20 70 6f 69 6e |y} criti|cal poin|
|00000b30| 74 2e 0a 5c 69 74 65 6d | 5b 49 64 65 6e 74 69 66 |t..\item|[Identif|
|00000b40| 79 20 74 68 65 20 65 78 | 74 72 65 6d 61 5d 20 20 |y the ex|trema] |
|00000b50| 54 68 65 20 6f 6e 6c 79 | 20 63 61 6e 64 69 64 61 |The only| candida|
|00000b60| 74 65 73 20 61 72 65 20 | 74 68 65 20 65 6e 64 70 |tes are |the endp|
|00000b70| 6f 69 6e 74 73 20 77 68 | 65 72 65 20 24 41 28 30 |oints wh|ere $A(0|
|00000b80| 29 20 3d 20 30 2c 20 41 | 28 50 2f 32 29 20 3d 20 |) = 0, A|(P/2) = |
|00000b90| 20 30 24 2c 20 61 6e 64 | 20 74 68 65 20 63 72 69 | 0$, and| the cri|
|00000ba0| 74 69 63 61 6c 20 70 6f | 69 6e 74 20 77 68 65 72 |tical po|int wher|
|00000bb0| 65 20 24 41 28 50 2f 34 | 29 20 3d 20 50 5e 32 2f |e $A(P/4|) = P^2/|
|00000bc0| 31 36 20 3e 20 30 24 2e | 20 20 20 53 6f 20 77 65 |16 > 0$.| So we|
|00000bd0| 20 73 65 65 20 74 68 61 | 74 20 24 78 20 3d 20 50 | see tha|t $x = P|
|00000be0| 2f 34 24 0a 69 73 20 74 | 68 65 20 76 61 6c 75 65 |/4$.is t|he value|
|00000bf0| 20 74 68 61 74 20 67 69 | 76 65 73 20 74 68 65 20 | that gi|ves the |
|00000c00| 6d 61 78 69 6d 75 6d 2e | 0a 5c 69 74 65 6d 5b 41 |maximum.|.\item[A|
|00000c10| 6e 73 77 65 72 20 74 68 | 65 20 71 75 65 73 74 69 |nswer th|e questi|
|00000c20| 6f 6e 20 70 6f 73 65 64 | 20 69 6e 20 74 68 65 20 |on posed| in the |
|00000c30| 70 72 6f 62 6c 65 6d 5d | 20 20 59 65 73 2c 20 64 |problem]| Yes, d|
|00000c40| 6f 6e 27 74 20 6c 6f 73 | 65 20 6f 75 74 20 61 66 |on't los|e out af|
|00000c50| 74 65 72 20 68 61 76 69 | 6e 67 20 64 6f 6e 65 20 |ter havi|ng done |
|00000c60| 61 6c 6c 20 74 68 65 20 | 68 61 72 64 20 73 74 75 |all the |hard stu|
|00000c70| 66 66 21 20 20 54 68 65 | 20 6d 61 78 69 6d 75 6d |ff! The| maximum|
|00000c80| 20 61 72 65 61 20 69 73 | 20 5c 66 62 6f 78 7b 20 | area is| \fbox{ |
|00000c90| 24 41 20 3d 20 50 5e 32 | 2f 31 36 20 3d 20 32 35 |$A = P^2|/16 = 25|
|00000ca0| 30 30 24 20 73 71 66 74 | 2e 7d 0a 5c 69 74 65 6d |00$ sqft|.}.\item|
|00000cb0| 5b 50 6c 61 75 73 69 62 | 69 6c 69 74 79 5d 20 20 |[Plausib|ility] |
|00000cc0| 54 68 61 74 20 24 78 24 | 20 69 73 20 31 2f 34 20 |That $x$| is 1/4 |
|00000cd0| 6f 66 20 74 68 65 20 70 | 65 72 69 6d 65 74 65 72 |of the p|erimeter|
|00000ce0| 20 28 24 50 2f 34 24 29 | 20 69 73 20 73 6f 20 70 | ($P/4$)| is so p|
|00000cf0| 6c 61 75 73 69 62 6c 65 | 20 74 68 61 74 20 6d 6f |lausible| that mo|
|00000d00| 73 74 20 6f 66 20 75 73 | 20 64 69 64 6e 27 74 20 |st of us| didn't |
|00000d10| 6e 65 65 64 20 63 61 6c | 63 75 6c 75 73 20 74 6f |need cal|culus to|
|00000d20| 20 66 69 6e 64 20 69 74 | 20 6f 75 74 2e 20 20 54 | find it| out. T|
|00000d30| 68 61 74 20 77 65 20 63 | 61 6e 20 65 6e 63 6c 6f |hat we c|an enclo|
|00000d40| 73 65 20 61 6e 20 61 72 | 65 61 20 6f 66 20 20 32 |se an ar|ea of 2|
|00000d50| 35 30 30 20 66 74 24 5e | 32 24 20 77 69 74 68 20 |500 ft$^|2$ with |
|00000d60| 32 30 30 20 66 74 20 6f | 66 20 66 65 6e 63 65 20 |200 ft o|f fence |
|00000d70| 73 65 65 6d 73 20 72 65 | 61 73 6f 6e 61 62 6c 65 |seems re|asonable|
|00000d80| 20 74 6f 6f 2e 20 20 57 | 65 27 64 20 62 65 20 73 | too. W|e'd be s|
|00000d90| 75 73 70 69 63 69 6f 75 | 73 20 6f 66 20 61 6e 20 |uspiciou|s of an |
|00000da0| 61 6e 73 77 65 72 20 6c | 69 6b 65 20 34 20 66 74 |answer l|ike 4 ft|
|00000db0| 24 5e 32 24 20 6f 72 20 | 6c 69 6b 65 20 34 30 30 |$^2$ or |like 400|
|00000dc0| 2c 30 30 30 20 66 74 24 | 5e 32 24 2e 0a 5c 69 74 |,000 ft$|^2$..\it|
|00000dd0| 65 6d 5b 44 69 6d 65 6e | 73 69 6f 6e 61 6c 20 63 |em[Dimen|sional c|
|00000de0| 68 65 63 6b 73 5d 20 20 | 53 69 6e 63 65 20 24 78 |hecks] |Since $x|
|00000df0| 20 3d 20 50 2f 34 24 2c | 20 74 68 65 20 64 69 6d | = P/4$,| the dim|
|00000e00| 65 6e 73 69 6f 6e 73 20 | 6f 66 20 24 78 24 20 61 |ensions |of $x$ a|
|00000e10| 72 65 20 74 68 6f 73 65 | 20 6f 66 20 70 65 72 69 |re those| of peri|
|00000e20| 6d 65 74 65 72 2c 20 6e | 61 6d 65 6c 79 20 6c 65 |meter, n|amely le|
|00000e30| 6e 67 74 68 2d 2d 2d 74 | 68 69 73 20 69 73 20 63 |ngth---t|his is c|
|00000e40| 6f 72 72 65 63 74 2e 20 | 20 50 6f 73 73 69 62 6c |orrect. | Possibl|
|00000e50| 65 20 6e 6f 74 61 74 69 | 6f 6e 3a 20 24 5b 50 5d |e notati|on: $[P]|
|00000e60| 20 3d 20 4c 24 20 28 77 | 68 65 72 65 20 24 4c 24 | = L$ (w|here $L$|
|00000e70| 20 73 74 61 6e 64 73 20 | 66 6f 72 20 6c 65 6e 67 | stands |for leng|
|00000e80| 74 68 29 2e 20 20 53 69 | 6d 69 6c 61 72 6c 79 2c |th). Si|milarly,|
|00000e90| 20 24 5b 41 5d 20 3d 20 | 5b 50 5e 32 2f 31 36 5d | $[A] = |[P^2/16]|
|00000ea0| 20 3d 20 5b 50 5e 32 5d | 20 3d 20 4c 5e 32 24 2d | = [P^2]| = L^2$-|
|00000eb0| 2d 2d 63 6f 72 72 65 63 | 74 2e 20 20 53 65 65 20 |--correc|t. See |
|00000ec0| 74 68 65 20 66 6f 6c 6c | 6f 77 69 6e 67 20 74 61 |the foll|owing ta|
|00000ed0| 62 6c 65 20 66 6f 72 20 | 73 6f 6d 65 20 75 73 65 |ble for |some use|
|00000ee0| 66 75 6c 20 65 78 61 6d | 70 6c 65 73 20 6f 66 20 |ful exam|ples of |
|00000ef0| 64 69 6d 65 6e 73 69 6f | 6e 73 20 75 73 69 6e 67 |dimensio|ns using|
|00000f00| 20 20 74 68 69 73 20 62 | 72 61 63 6b 65 74 20 6e | this b|racket n|
|00000f10| 6f 74 61 74 69 6f 6e 2e | 0a 5c 65 6e 64 7b 64 65 |otation.|.\end{de|
|00000f20| 73 63 72 69 70 74 69 6f | 6e 7d 0a 0a 5c 62 65 67 |scriptio|n}..\beg|
|00000f30| 69 6e 7b 74 61 62 75 6c | 61 72 7d 7b 7c 7c 6c 7c |in{tabul|ar}{||l||
|00000f40| 6c 7c 7c 7d 09 5c 68 6c | 69 6e 65 0a 5c 42 66 7b |l||}.\hl|ine.\Bf{|
|00000f50| 51 75 61 6e 74 69 74 79 | 7d 20 26 20 5c 42 66 7b |Quantity|} & \Bf{|
|00000f60| 44 69 6d 65 6e 73 69 6f | 6e 73 7d 20 5c 5c 20 5c |Dimensio|ns} \\ \|
|00000f70| 68 6c 69 6e 65 0a 70 65 | 72 69 6d 65 74 65 72 20 |hline.pe|rimeter |
|00000f80| 26 20 24 5b 50 5d 20 3d | 20 4c 24 09 5c 5c 0a 61 |& $[P] =| L$.\\.a|
|00000f90| 72 65 61 20 26 20 24 5b | 41 5d 20 3d 20 4c 5e 32 |rea & $[|A] = L^2|
|00000fa0| 24 09 5c 5c 0a 76 6f 6c | 75 6d 65 20 26 20 24 5b |$.\\.vol|ume & $[|
|00000fb0| 56 5d 20 3d 20 4c 5e 33 | 24 09 5c 5c 0a 76 65 6c |V] = L^3|$.\\.vel|
|00000fc0| 6f 63 69 74 79 20 26 20 | 24 5b 76 5d 20 3d 20 4c |ocity & |$[v] = L|
|00000fd0| 2f 54 24 09 5c 5c 0a 61 | 63 63 65 6c 65 72 61 74 |/T$.\\.a|ccelerat|
|00000fe0| 69 6f 6e 20 26 20 24 5b | 61 5d 20 3d 20 4c 2f 54 |ion & $[|a] = L/T|
|00000ff0| 5e 32 24 09 5c 5c 0a 66 | 6f 72 63 65 20 26 20 24 |^2$.\\.f|orce & $|
|00001000| 5b 46 5d 20 3d 20 4d 4c | 2f 54 5e 32 24 20 5c 5c |[F] = ML|/T^2$ \\|
|00001010| 20 5c 68 6c 69 6e 65 0a | 5c 65 6e 64 7b 74 61 62 | \hline.|\end{tab|
|00001020| 75 6c 61 72 7d 0a 0a 5c | 76 73 70 61 63 65 7b 2e |ular}..\|vspace{.|
|00001030| 37 35 65 78 7d 0a 5c 6e | 6f 69 6e 64 65 6e 74 20 |75ex}.\n|oindent |
|00001040| 52 65 61 6c 69 7a 65 20 | 74 68 61 74 20 5c 45 6d |Realize |that \Em|
|00001050| 7b 64 69 6d 65 6e 73 69 | 6f 6e 73 7d 20 61 72 65 |{dimensi|ons} are|
|00001060| 20 5c 45 6d 7b 6e 6f 74 | 7d 20 74 68 65 20 73 61 | \Em{not|} the sa|
|00001070| 6d 65 20 74 68 69 6e 67 | 20 61 73 20 5c 45 6d 7b |me thing| as \Em{|
|00001080| 75 6e 69 74 73 7d 3a 20 | 66 65 65 74 2c 20 69 6e |units}: |feet, in|
|00001090| 63 68 65 73 2c 20 63 6d | 2c 20 6b 6d 20 5c 45 6d |ches, cm|, km \Em|
|000010a0| 7b 61 6c 6c 7d 20 68 61 | 76 65 20 64 69 6d 65 6e |{all} ha|ve dimen|
|000010b0| 73 69 6f 6e 73 20 6f 66 | 20 6c 65 6e 67 74 68 20 |sions of| length |
|000010c0| 28 24 4c 24 29 2e 20 20 | 49 74 20 69 73 20 74 72 |($L$). |It is tr|
|000010d0| 75 65 20 74 68 61 74 20 | 79 6f 75 20 73 68 6f 75 |ue that |you shou|
|000010e0| 6c 64 20 63 6f 6e 76 65 | 72 74 20 74 6f 20 63 6f |ld conve|rt to co|
|000010f0| 6e 73 69 73 74 65 6e 74 | 20 75 6e 69 74 73 20 69 |nsistent| units i|
|00001100| 6e 20 66 69 6e 61 6c 20 | 6e 75 6d 65 72 69 63 61 |n final |numerica|
|00001110| 6c 20 61 6e 73 77 65 72 | 73 20 28 65 67 2e 20 36 |l answer|s (eg. 6|
|00001120| 20 66 74 20 2f 20 33 20 | 69 6e 20 3d 20 32 34 20 | ft / 3 |in = 24 |
|00001130| 69 6e 29 2e 20 20 20 41 | 6c 74 68 6f 75 67 68 20 |in). A|lthough |
|00001140| 74 68 69 73 20 69 73 20 | 69 6d 70 6f 72 74 61 6e |this is |importan|
|00001150| 74 2c 20 69 74 20 69 73 | 20 61 20 6c 65 73 73 20 |t, it is| a less |
|00001160| 66 75 6e 64 61 6d 65 6e | 74 61 6c 20 6d 61 74 74 |fundamen|tal matt|
|00001170| 65 72 20 74 68 61 6e 20 | 6d 61 6b 69 6e 67 20 73 |er than |making s|
|00001180| 75 72 65 20 79 6f 75 72 | 20 61 6e 73 77 65 72 20 |ure your| answer |
|00001190| 68 61 73 20 74 68 65 20 | 63 6f 72 72 65 63 74 20 |has the |correct |
|000011a0| 64 69 6d 65 6e 73 69 6f | 6e 73 2e 0a 0a 5c 76 73 |dimensio|ns...\vs|
|000011b0| 70 61 63 65 7b 31 2e 30 | 65 78 7d 0a 5c 6e 6f 69 |pace{1.0|ex}.\noi|
|000011c0| 6e 64 65 6e 74 20 20 49 | 6e 20 74 68 65 20 66 6f |ndent I|n the fo|
|000011d0| 6c 6c 6f 77 69 6e 67 20 | 76 61 72 69 61 6e 74 73 |llowing |variants|
|000011e0| 20 6f 66 20 74 68 65 20 | 74 65 78 74 20 70 72 6f | of the |text pro|
|000011f0| 62 6c 65 6d 73 2c 20 70 | 61 72 61 6d 65 74 65 72 |blems, p|arameter|
|00001200| 73 20 61 72 65 20 6f 66 | 74 65 6e 20 69 6e 74 72 |s are of|ten intr|
|00001210| 6f 64 75 63 65 64 20 69 | 6e 20 70 6c 61 63 65 20 |oduced i|n place |
|00001220| 6f 66 20 73 70 65 63 69 | 66 69 63 20 6e 75 6d 62 |of speci|fic numb|
|00001230| 65 72 73 2d 2d 2d 70 72 | 6f 63 65 65 64 20 61 73 |ers---pr|oceed as|
|00001240| 20 66 61 72 20 61 73 20 | 73 65 65 6d 73 20 70 72 | far as |seems pr|
|00001250| 61 63 74 69 63 61 6c 20 | 77 69 74 68 20 74 68 65 |actical |with the|
|00001260| 20 70 61 72 61 6d 65 74 | 65 72 73 2e 20 48 61 76 | paramet|ers. Hav|
|00001270| 65 20 61 20 73 74 72 6f | 6e 67 20 72 65 61 73 6f |e a stro|ng reaso|
|00001280| 6e 20 69 66 20 79 6f 75 | 20 64 6f 20 73 69 6d 70 |n if you| do simp|
|00001290| 6c 69 66 79 20 74 6f 20 | 73 70 65 63 69 66 69 63 |lify to |specific|
|000012a0| 20 6e 75 6d 62 65 72 73 | 20 61 6e 64 20 74 68 75 | numbers| and thu|
|000012b0| 73 20 6c 6f 73 65 20 74 | 68 65 20 63 68 61 6e 63 |s lose t|he chanc|
|000012c0| 65 20 74 6f 20 64 65 72 | 69 76 65 20 67 65 6e 65 |e to der|ive gene|
|000012d0| 72 61 6c 20 72 65 73 75 | 6c 74 73 20 61 6e 64 20 |ral resu|lts and |
|000012e0| 72 65 6c 79 20 6f 6e 20 | 64 69 6d 65 6e 73 69 6f |rely on |dimensio|
|000012f0| 6e 61 6c 20 63 68 65 63 | 6b 73 3b 20 74 72 79 20 |nal chec|ks; try |
|00001300| 74 6f 20 75 73 65 20 5c | 4d 6d 61 5c 20 20 69 66 |to use \|Mma\ if|
|00001310| 20 79 6f 75 20 72 75 6e | 20 69 6e 74 6f 20 65 78 | you run| into ex|
|00001320| 63 72 75 63 69 61 74 69 | 6e 67 20 61 6c 67 65 62 |cruciati|ng algeb|
|00001330| 72 61 2e 0a 0a 5c 62 65 | 67 69 6e 7b 65 6e 75 6d |ra...\be|gin{enum|
|00001340| 65 72 61 74 65 7d 0a 0a | 0a 5c 69 74 65 6d 20 28 |erate}..|.\item (|
|00001350| 33 2e 36 2e 37 29 20 54 | 68 65 20 73 75 6d 20 6f |3.6.7) T|he sum o|
|00001360| 66 20 74 77 6f 20 70 6f | 73 69 74 69 76 65 20 6e |f two po|sitive n|
|00001370| 75 6d 62 65 72 73 20 69 | 73 20 24 53 24 2e 20 20 |umbers i|s $S$. |
|00001380| 57 68 61 74 20 69 73 20 | 74 68 65 20 73 6d 61 6c |What is |the smal|
|00001390| 6c 65 73 74 20 70 6f 73 | 73 69 62 6c 65 20 76 61 |lest pos|sible va|
|000013a0| 6c 75 65 20 6f 66 20 74 | 68 65 20 73 75 6d 20 6f |lue of t|he sum o|
|000013b0| 66 20 74 68 65 69 72 20 | 73 71 75 61 72 65 73 3f |f their |squares?|
|000013c0| 20 20 41 6c 73 6f 20 6f | 62 74 61 69 6e 20 6e 75 | Also o|btain nu|
|000013d0| 6d 65 72 69 63 61 6c 20 | 76 61 6c 75 65 73 20 66 |merical |values f|
|000013e0| 6f 72 20 24 53 20 3d 20 | 34 38 24 20 61 6e 64 20 |or $S = |48$ and |
|000013f0| 20 6d 61 6b 65 20 61 20 | 63 6f 6e 66 69 72 6d 69 | make a |confirmi|
|00001400| 6e 67 20 5c 54 74 7b 50 | 6c 6f 74 7d 20 66 6f 72 |ng \Tt{P|lot} for|
|00001410| 20 74 68 69 73 20 63 61 | 73 65 2e 20 20 41 6c 73 | this ca|se. Als|
|00001420| 6f 20 64 69 73 63 75 73 | 73 20 67 65 74 74 69 6e |o discus|s gettin|
|00001430| 67 20 74 68 65 20 5c 45 | 6d 7b 6c 61 72 67 65 73 |g the \E|m{larges|
|00001440| 74 7d 20 70 6f 73 73 69 | 62 6c 65 20 76 61 6c 75 |t} possi|ble valu|
|00001450| 65 20 66 6f 72 20 74 68 | 65 20 73 75 6d 20 6f 66 |e for th|e sum of|
|00001460| 20 73 71 75 61 72 65 73 | 2e 20 20 41 72 65 20 79 | squares|. Are y|
|00001470| 6f 75 72 20 61 6e 73 77 | 65 72 73 20 70 6c 61 75 |our answ|ers plau|
|00001480| 73 69 62 6c 65 3f 20 20 | 50 75 72 65 20 6e 75 6d |sible? |Pure num|
|00001490| 62 65 72 73 20 64 6f 6e | 27 74 20 68 61 76 65 20 |bers don|'t have |
|000014a0| 64 69 6d 65 6e 73 69 6f | 6e 73 2c 20 73 6f 20 74 |dimensio|ns, so t|
|000014b0| 65 63 68 6e 69 63 61 6c | 6c 79 20 79 6f 75 20 63 |echnical|ly you c|
|000014c0| 61 6e 27 74 20 75 73 65 | 20 64 69 6d 65 6e 73 69 |an't use| dimensi|
|000014d0| 6f 6e 61 6c 20 63 68 65 | 63 6b 73 20 68 65 72 65 |onal che|cks here|
|000014e0| 2d 2d 2d 63 61 6e 20 79 | 6f 75 20 74 68 69 6e 6b |---can y|ou think|
|000014f0| 20 6f 66 20 61 20 77 61 | 79 20 61 72 6f 75 6e 64 | of a wa|y around|
|00001500| 20 74 68 69 73 3f 0a 0a | 5c 69 74 65 6d 28 33 2e | this?..|\item(3.|
|00001510| 36 2e 39 29 20 52 65 70 | 65 61 74 20 6c 61 73 74 |6.9) Rep|eat last|
|00001520| 20 70 72 6f 62 6c 65 6d | 20 66 6f 72 20 73 75 6d | problem| for sum|
|00001530| 20 6f 66 20 5c 45 6d 7b | 63 75 62 65 73 7d 2e 0a | of \Em{|cubes}..|
|00001540| 0a 5c 69 74 65 6d 20 24 | 5b 7b 5c 62 66 20 4f 70 |.\item $|[{\bf Op|
|00001550| 74 69 6f 6e 61 6c 7d 5d | 24 20 54 68 65 72 65 20 |tional}]|$ There |
|00001560| 69 73 20 61 20 67 65 6e | 65 72 61 6c 20 63 6f 6e |is a gen|eral con|
|00001570| 63 6c 75 73 69 6f 6e 20 | 76 61 6c 69 64 20 66 6f |clusion |valid fo|
|00001580| 72 20 5c 45 6d 7b 61 6e | 79 7d 20 70 6f 77 65 72 |r \Em{an|y} power|
|00001590| 20 6c 75 72 6b 69 6e 67 | 20 69 6e 20 74 68 65 20 | lurking| in the |
|000015a0| 6c 61 73 74 20 74 77 6f | 20 70 72 6f 62 6c 65 6d |last two| problem|
|000015b0| 73 2c 20 63 61 6e 20 79 | 6f 75 20 66 69 6e 64 20 |s, can y|ou find |
|000015c0| 69 74 3f 20 20 43 68 65 | 63 6b 20 6f 75 74 20 79 |it? Che|ck out y|
|000015d0| 6f 75 72 20 72 65 73 75 | 6c 74 20 66 6f 72 20 63 |our resu|lt for c|
|000015e0| 75 62 65 20 72 6f 6f 74 | 73 20 28 33 2e 36 2e 33 |ube root|s (3.6.3|
|000015f0| 39 29 2e 0a 0a 5c 69 74 | 65 6d 20 28 33 2e 36 2e |9)...\it|em (3.6.|
|00001600| 31 31 29 20 41 20 66 61 | 72 6d 65 72 20 68 61 73 |11) A fa|rmer has|
|00001610| 20 24 50 24 20 79 61 72 | 64 73 20 6f 66 20 66 65 | $P$ yar|ds of fe|
|00001620| 6e 63 69 6e 67 20 77 69 | 74 68 20 77 68 69 63 68 |ncing wi|th which|
|00001630| 20 74 6f 20 62 75 69 6c | 64 20 61 20 72 65 63 74 | to buil|d a rect|
|00001640| 61 6e 67 75 6c 61 72 20 | 63 6f 72 72 61 6c 20 68 |angular |corral h|
|00001650| 61 76 69 6e 67 20 74 77 | 6f 20 69 6e 74 65 72 6e |aving tw|o intern|
|00001660| 61 6c 20 64 69 76 69 64 | 65 72 73 20 62 6f 74 68 |al divid|ers both|
|00001670| 20 70 61 72 61 6c 6c 65 | 6c 20 74 6f 20 74 77 6f | paralle|l to two|
|00001680| 20 6f 66 20 74 68 65 20 | 73 69 64 65 73 20 6f 66 | of the |sides of|
|00001690| 20 74 68 65 20 63 6f 72 | 72 61 6c 2e 20 20 57 68 | the cor|ral. Wh|
|000016a0| 61 74 20 69 73 20 74 68 | 65 20 6d 61 78 69 6d 75 |at is th|e maximu|
|000016b0| 6d 20 74 6f 74 61 6c 20 | 61 72 65 61 20 6f 66 20 |m total |area of |
|000016c0| 73 75 63 68 20 61 20 63 | 6f 72 72 61 6c 3f 20 20 |such a c|orral? |
|000016d0| 41 6c 73 6f 20 6f 62 74 | 61 69 6e 20 6e 75 6d 65 |Also obt|ain nume|
|000016e0| 72 69 63 61 6c 20 76 61 | 6c 75 65 73 20 66 6f 72 |rical va|lues for|
|000016f0| 20 24 50 20 3d 20 36 30 | 30 24 2e 0a 0a 44 69 63 | $P = 60|0$...Dic|
|00001700| 74 69 6f 6e 61 72 79 20 | 6e 6f 74 65 3a 20 20 61 |tionary |note: a|
|00001710| 20 5c 45 6d 7b 63 6f 72 | 72 61 6c 7d 20 69 73 20 | \Em{cor|ral} is |
|00001720| 61 20 66 65 6e 63 65 64 | 20 61 72 65 61 20 75 73 |a fenced| area us|
|00001730| 65 64 20 74 6f 20 63 6f | 6e 74 61 69 6e 20 66 61 |ed to co|ntain fa|
|00001740| 72 6d 20 61 6e 69 6d 61 | 6c 73 2e 0a 0a 4d 61 74 |rm anima|ls...Mat|
|00001750| 68 65 6d 61 74 69 63 61 | 6c 20 6e 6f 74 65 3a 20 |hematica|l note: |
|00001760| 20 61 20 73 75 72 70 72 | 69 73 69 6e 67 20 66 65 | a surpr|ising fe|
|00001770| 61 74 75 72 65 20 6f 66 | 20 74 68 69 73 20 70 72 |ature of| this pr|
|00001780| 6f 62 6c 65 6d 20 69 73 | 20 74 68 61 74 20 69 74 |oblem is| that it|
|00001790| 20 64 6f 65 73 6e 27 74 | 20 6d 61 74 74 65 72 20 | doesn't| matter |
|000017a0| 69 66 20 74 68 65 20 74 | 77 6f 20 69 6e 74 65 72 |if the t|wo inter|
|000017b0| 6e 61 6c 20 64 69 76 69 | 64 65 72 73 20 61 72 65 |nal divi|ders are|
|000017c0| 20 65 71 75 61 6c 6c 79 | 20 73 70 61 63 65 64 20 | equally| spaced |
|000017d0| 6f 72 20 6e 6f 74 2c 20 | 73 6f 20 64 6f 6e 27 74 |or not, |so don't|
|000017e0| 20 61 73 73 75 6d 65 20 | 74 68 69 73 2e 0a 0a 5c | assume |this...\|
|000017f0| 69 74 65 6d 20 28 45 78 | 61 6d 70 6c 65 20 36 29 |item (Ex|ample 6)|
|00001800| 20 49 6e 20 74 68 65 20 | 63 6f 77 20 61 70 70 6c | In the |cow appl|
|00001810| 69 63 61 74 69 6f 6e 20 | 6f 66 20 74 68 65 20 6c |ication |of the l|
|00001820| 61 77 20 6f 66 20 72 65 | 66 6c 65 63 74 69 6f 6e |aw of re|flection|
|00001830| 2c 20 72 65 64 6f 20 74 | 68 65 20 63 61 6c 63 75 |, redo t|he calcu|
|00001840| 6c 61 74 69 6f 6e 20 6d | 6f 72 65 20 73 69 6d 70 |lation m|ore simp|
|00001850| 6c 79 20 62 79 20 6f 62 | 73 65 72 76 69 6e 67 20 |ly by ob|serving |
|00001860| 74 68 61 74 20 24 5c 61 | 6c 70 68 61 20 3d 20 5c |that $\a|lpha = \|
|00001870| 62 65 74 61 24 20 69 6d | 70 6c 69 65 73 20 74 68 |beta$ im|plies th|
|00001880| 61 74 20 24 5c 63 6f 74 | 20 5c 61 6c 70 68 61 20 |at $\cot| \alpha |
|00001890| 3d 20 5c 63 6f 74 20 5c | 62 65 74 61 24 2e 0a 41 |= \cot \|beta$..A|
|000018a0| 6c 73 6f 20 75 73 65 20 | 74 68 69 73 20 6d 65 74 |lso use |this met|
|000018b0| 68 6f 64 20 74 6f 20 67 | 65 74 20 74 68 65 20 67 |hod to g|et the g|
|000018c0| 65 6e 65 72 61 6c 20 72 | 65 73 75 6c 74 20 62 79 |eneral r|esult by|
|000018d0| 20 75 73 69 6e 67 20 6c | 65 74 74 65 72 73 20 69 | using l|etters i|
|000018e0| 6e 73 74 65 61 64 20 6f | 66 20 6e 75 6d 62 65 72 |nstead o|f number|
|000018f0| 73 2e 0a 0a 5c 69 74 65 | 6d 20 28 33 2e 36 2e 31 |s...\ite|m (3.6.1|
|00001900| 35 29 20 54 68 65 20 76 | 6f 6c 75 6d 65 20 6f 66 |5) The v|olume of|
|00001910| 20 31 20 6b 67 20 6f 66 | 20 77 61 74 65 72 20 61 | 1 kg of| water a|
|00001920| 74 20 61 20 74 65 6d 70 | 65 72 61 74 75 72 65 20 |t a temp|erature |
|00001930| 24 54 24 20 62 65 74 77 | 65 65 6e 20 30 24 5e 5c |$T$ betw|een 0$^\|
|00001940| 63 69 72 63 24 43 20 61 | 6e 64 20 33 30 24 5e 5c |circ$C a|nd 30$^\|
|00001950| 63 69 72 63 24 43 20 69 | 73 20 61 70 70 72 6f 78 |circ$C i|s approx|
|00001960| 69 6d 61 74 65 6c 79 20 | 5c 5b 56 20 3d 20 61 20 |imately |\[V = a |
|00001970| 2d 20 62 54 20 2b 20 63 | 20 54 5e 32 20 2d 20 64 |- bT + c| T^2 - d|
|00001980| 20 54 5e 33 20 20 5c 5d | 20 20 63 75 62 69 63 20 | T^3 \]| cubic |
|00001990| 63 65 6e 74 69 6d 65 74 | 65 72 73 2e 20 20 41 74 |centimet|ers. At|
|000019a0| 20 77 68 61 74 20 74 65 | 6d 70 65 72 61 74 75 72 | what te|mperatur|
|000019b0| 65 20 64 6f 65 73 20 77 | 61 74 65 72 20 68 61 76 |e does w|ater hav|
|000019c0| 65 20 69 74 73 20 6d 61 | 78 69 6d 75 6d 20 64 65 |e its ma|ximum de|
|000019d0| 6e 73 69 74 79 3f 20 20 | 20 54 68 65 20 65 6d 70 |nsity? | The emp|
|000019e0| 69 72 69 63 61 6c 20 76 | 61 6c 75 65 73 20 66 6f |irical v|alues fo|
|000019f0| 72 20 74 68 65 20 70 6f | 73 69 74 69 76 65 20 63 |r the po|sitive c|
|00001a00| 6f 6e 73 74 61 6e 74 73 | 20 24 61 2c 20 62 2c 20 |onstants| $a, b, |
|00001a10| 63 2c 20 64 24 20 61 72 | 65 20 24 61 20 3d 20 39 |c, d$ ar|e $a = 9|
|00001a20| 39 39 2e 38 37 2c 20 62 | 20 3d 20 30 2e 30 36 34 |99.87, b| = 0.064|
|00001a30| 32 36 2c 20 63 20 3d 20 | 30 2e 30 30 38 35 30 34 |26, c = |0.008504|
|00001a40| 33 2c 20 64 20 3d 20 30 | 2e 30 30 30 30 36 37 39 |3, d = 0|.0000679|
|00001a50| 24 2e 0a 0a 5c 69 74 65 | 6d 20 28 33 2e 36 2e 31 |$...\ite|m (3.6.1|
|00001a60| 39 29 20 54 68 72 65 65 | 20 6c 61 72 67 65 20 73 |9) Three| large s|
|00001a70| 71 75 61 72 65 73 20 6f | 66 20 74 69 6e 2c 20 65 |quares o|f tin, e|
|00001a80| 61 63 68 20 6f 66 20 65 | 64 67 65 20 6c 65 6e 67 |ach of e|dge leng|
|00001a90| 74 68 20 24 73 24 20 6d | 2c 20 68 61 76 65 20 66 |th $s$ m|, have f|
|00001aa0| 6f 75 72 20 65 71 75 61 | 6c 20 73 6d 61 6c 6c 20 |our equa|l small |
|00001ab0| 73 71 75 61 72 65 73 20 | 63 75 74 20 66 72 6f 6d |squares |cut from|
|00001ac0| 20 74 68 65 69 72 20 63 | 6f 72 6e 65 72 73 2e 20 | their c|orners. |
|00001ad0| 20 41 6c 6c 20 74 77 65 | 6c 76 65 20 72 65 73 75 | All twe|lve resu|
|00001ae0| 6c 74 69 6e 67 20 73 6d | 61 6c 6c 20 73 71 75 61 |lting sm|all squa|
|00001af0| 72 65 73 20 61 72 65 20 | 74 6f 20 62 65 20 74 68 |res are |to be th|
|00001b00| 65 20 73 61 6d 65 20 73 | 69 7a 65 2e 20 20 54 68 |e same s|ize. Th|
|00001b10| 65 20 74 68 72 65 65 20 | 6c 61 72 67 65 20 63 72 |e three |large cr|
|00001b20| 6f 73 73 2d 73 68 61 70 | 65 64 20 70 69 63 65 73 |oss-shap|ed pices|
|00001b30| 20 61 72 65 20 74 68 65 | 6e 20 66 6f 6c 64 65 64 | are the|n folded|
|00001b40| 20 61 6e 64 20 77 65 6c | 64 65 64 20 74 6f 20 6d | and wel|ded to m|
|00001b50| 61 6b 65 20 62 6f 78 65 | 73 20 77 69 74 68 20 6e |ake boxe|s with n|
|00001b60| 6f 20 74 6f 70 73 2c 20 | 61 6e 64 20 74 68 65 20 |o tops, |and the |
|00001b70| 74 77 65 6c 76 65 20 73 | 6d 61 6c 6c 20 73 71 75 |twelve s|mall squ|
|00001b80| 61 72 65 73 20 61 72 65 | 20 75 73 65 64 20 74 6f |ares are| used to|
|00001b90| 20 6d 61 6b 65 20 74 77 | 6f 20 63 75 62 65 73 2e | make tw|o cubes.|
|00001ba0| 20 20 48 6f 77 20 73 68 | 6f 75 6c 64 20 74 68 69 | How sh|ould thi|
|00001bb0| 73 20 62 65 20 64 6f 6e | 65 20 74 6f 20 6d 61 78 |s be don|e to max|
|00001bc0| 69 6d 69 7a 65 20 74 68 | 65 20 74 6f 74 61 6c 20 |imize th|e total |
|00001bd0| 76 6f 6c 75 6d 65 20 6f | 66 20 61 6c 6c 20 66 69 |volume o|f all fi|
|00001be0| 76 65 20 62 6f 78 65 73 | 3f 20 20 45 76 61 6c 75 |ve boxes|? Evalu|
|00001bf0| 61 74 65 20 79 6f 75 72 | 20 61 6e 73 77 65 72 20 |ate your| answer |
|00001c00| 66 6f 72 20 74 68 65 20 | 6e 75 6d 65 72 69 63 61 |for the |numerica|
|00001c10| 6c 20 76 61 6c 75 65 20 | 24 73 20 3d 20 31 24 2e |l value |$s = 1$.|
|00001c20| 20 20 53 75 67 67 65 73 | 74 69 6f 6e 3a 20 75 73 | Sugges|tion: us|
|00001c30| 65 20 5c 54 74 7b 50 6c | 6f 74 7d 20 74 6f 20 63 |e \Tt{Pl|ot} to c|
|00001c40| 6f 6e 66 69 72 6d 20 79 | 6f 75 72 20 6e 75 6d 65 |onfirm y|our nume|
|00001c50| 72 69 63 61 6c 20 61 6e | 73 77 65 72 2e 0a 0a 25 |rical an|swer...%|
|00001c60| 20 4c 6f 67 69 73 74 69 | 63 20 67 72 6f 77 74 68 | Logisti|c growth|
|00001c70| 0a 5c 65 6e 64 7b 65 6e | 75 6d 65 72 61 74 65 7d |.\end{en|umerate}|
|00001c80| 0a 5c 65 6e 64 7b 64 6f | 63 75 6d 65 6e 74 7d 0a |.\end{do|cument}.|
+--------+-------------------------+-------------------------+--------+--------+